MATHS CLASS XII (Relations and Functions) Continuation.....

General direction for the students:-Whatever be the notes provided, everything must be copied in the Maths Copy and then do the Home work in the same Copy.

INVERTIBLE FUNCTIONS

Let $f: A \to B$ be one one and onto function and if f(x) = y where $x \in A$, $y \in B$ then $f^{-1}: B \to A$ defined by $f^{-1}(y) = x$ is called an inverse function of f.

Results

- i) Domain of $f^{-1} = Range \ of \ f$.
- ii) Range of f^{-1} = Domain of f.

iii)
$$f^{-1}(y) = x$$
 iff $f(x) = y$ where $x \in A$, $y \in B$

Properties of inverse functions.

1. Inverse of a bijective function is unique.

2.
$$(f^{-1})^{-1} = f$$

3. if
$$f: A \to B$$
 is bijective, then (i) $f^{-1}of = I_A$ (ii) $fof^{-1} = I_B$

Means Composition of a function and its inverse is Identity function.

4.
$$(gof)^{-1} = f^{-1}og^{-1}$$

*** Watch the video for the explanation of above notes.

Exercise 1.5

5. Given
$$f : R \to R$$
, $f(x) = 4x + 5$

For one one

Let x, y belongs to its domain such that f(x) = f(y)

$$\Rightarrow$$
 4x + 5 = 4y + 5

$$\Rightarrow x = y$$

 \Rightarrow f is one one

For Onto

Given Codomain=R also Given $x \in R$

$$\Rightarrow$$
 y= 4x + 5 ϵ R \Rightarrow y ϵ R

Range of f = codomain of f

 \Rightarrow f is onto

 \Rightarrow f is Invertible.

Given
$$y = 4x + 5 \implies x = \frac{y - 5}{4} \implies f^{-1}(y) = \frac{y - 5}{4}$$

18. Given
$$f: R - \left\{-\frac{3}{5}\right\} \to R - \left\{\frac{2}{5}\right\}$$
 defined by $f(x) = \frac{2x}{5x + 3}$

For one one , $\ \ Let \ x_1$, $x_2 \in D_f$ such that $f(x_1) = f(x_2)$

$$\Rightarrow \frac{2x_1}{5x_1 + 3} = \frac{2x_2}{5x_2 + 3}$$

$$\Rightarrow 10x_1x_2 + 6x_1 = 10x_1x_2 + 6x_2 \quad \Rightarrow x_1 = x_2 \Rightarrow \text{f is one one.}$$

For onto, Codomain= $R - \left\{\frac{2}{5}\right\}$

Given
$$y = \frac{2x}{5x+3}$$
 $\Rightarrow 5xy + 3y = 2x$ $\Rightarrow x = \frac{3y}{2-5y}$

$$\Rightarrow$$
 Range = $R - \left\{\frac{2}{5}\right\}$ = Codomain

 \Rightarrow f is onto.

 \Rightarrow f is Invertible.

For inverse, $x = \frac{3y}{2-5y}$

$$\Rightarrow f^{-1}(y) = \frac{3y}{2-5y}$$

HOME WORK: Left over questions from the exercise.